首页> 外文OA文献 >Improving Working Conditions for Astronauts: An Electronic Personal Restraint System for Use in Microgravity Environments
【2h】

Improving Working Conditions for Astronauts: An Electronic Personal Restraint System for Use in Microgravity Environments

机译:改善宇航员的工作条件:用于微重力环境的电子个人约束系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

While in microgravity, astronauts are preoccupied with physical restraint, which takes attention away from the maintenance task or scientific experiment at hand. This may directly lead to safety concerns and increased time for extravehicular activity, as well as potentially inhibit or corrupt data collection. A primary concern is the time it takes to manipulate the current restraint system. The portable foot restraint currently in use by NASA employs a series of pins in order to engage the system or release in an emergency. This requires considerable time for the user to detach, and there is an increased risk of entanglement. If restraint operating time could be reduced by 50%, the astronaut’s assigned experiment time could be increased an average of 100 minutes per mission. Another problem identified by NASA included the inability of the current system to release the user upon failure. Research and design was conducted following the Six-Sigma DMEDI project architecture, and a new form of restraint to replace the existing system was proposed. The research team first studied the customer requirements and relevant standards set by NASA, and with this information they began drafting designs for a solution. This project utilized electromagnetism to restrain a user in microgravity. The proposed system was capable of being manipulated quickly, failing in a manner that released the user, and being electronically controlled. This active electronic control was a new concept in restraint systems, as it enabled an astronaut to effectively “walk” along a surface while remaining restrained to it. With the design prototype and a limited budget, a rudimentary test assembly was built by the team, and most of NASA’s specifications were met. With recommendations from NASA, the research team concluded by developing potential material and design solutions that can be explored in the future by Purdue University or other parties.
机译:在微重力作用下,宇航员全神贯注于物理约束,这将注意力从维护任务或手头的科学实验上转移开来。这可能直接导致安全隐患,并增加车载活动的时间,并可能抑制或破坏数据收集。首先要考虑的是操纵电流限制系统所花费的时间。 NASA当前使用的便携式脚约束装置采用了一系列销钉,以便在紧急情况下与系统接合或释放。这需要用户花费大量时间来拆卸,并且缠绕的风险增加。如果约束操作时间可以减少50%,那么每次任务平均分配给宇航员的实验时间将增加100分钟。 NASA识别的另一个问题包括当前系统无法在发生故障时释放用户。按照六西格玛DMEDI项目架构进行了研究和设计,并提出了一种新的约束形式来替代现有系统。研究团队首先研究了NASA制定的客户要求和相关标准,然后他们利用这些信息开始起草解决方案的设计。该项目利用电磁来限制用户的微重力。所提出的系统能够被快速操纵,以释放用户的方式发生故障并受到电子控制。这种主动电子控制是约束系统中的一个新概念,因为它使宇航员能够有效地“沿着”表面行走,同时保持对表面的约束。利用设计原型和有限的预算,团队构建了基本的测试组件,并且满足了NASA的大多数规范。在NASA的建议下,研究小组总结了开发潜在的材料和设计解决方案的方法,这些方法可以在未来由Purdue大学或其他机构进行探索。

著录项

  • 作者

    Tait, Kevin; Lewis, Justin;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号